Skip to main content
Log in

An example of the prisoner's dilemma in biochemistry

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Two strains of microorganisms that both use sugar as energy resource, but which may choose between two different pathways of ATP production, are studied from a game-theory point of view. We consider these pathways as distinct strategies to which we assign payoffs that are proportional to the expected steady-state number of individuals sustainable on the basis of these strategies. In a certain parameter range, we find that the payoffs fulfil the conditions for the prisoner's dilemma. Therefore, cooperative behaviour is unlikely to occur, unless additional factors intervene. In fact, the yeast Saccharomyces cerevisiae uses a competitive strategy by fermenting sugars even under aerobic conditions, thus wasting its own resource. The simple quantifiable structure of the model should enable access to an experimentally determined payoff matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  • Axelrod R (1984) The evolution of cooperation. Basic Books, New York

  • Cushing JM (1986) Periodic Lotka-Volterra competition equations. J Math Biol 24:381–403

    CAS  PubMed  Google Scholar 

  • Dugatkin LA, Mesterton-Gibbons M (1996) Cooperation among unrelated individuals: reciprocal altruism, by-product mutualism and group selection in fishes. BioSystems 37:19–30

    Article  CAS  PubMed  Google Scholar 

  • Flores CL, Rodriguez C, Petit T, Ganzedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microb Rev 24:507–529

    Article  CAS  Google Scholar 

  • Fogel DB (ed) (1996) Special issue on the prisoner's dilemma. BioSystems 37(1–2)

    Article  CAS  PubMed  Google Scholar 

  • Goffrini P, Ferrero I, Donnini C (2002) Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters. J Bacteriol 184:427–432

    Article  CAS  PubMed  Google Scholar 

  • Guppy M, Leedman P, Zu X, Russell V (2002) Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. Biochem J 364:309–315

    CAS  PubMed  Google Scholar 

  • Hauert C, De Monte, S, Hofbauer J, Sigmund K (2002) Volunteering as red queen mechanism for cooperation in public goods games. Science 296:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Heinrich R, Schuster S (1996) The regulation of cellular systems. Chapman and Hall, New York

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

  • Kappler O, Janssen PH, Kreft JU, Schink B (1997) Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida. Microbiology 143:1105–1114

    CAS  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (2000) Principles of Biochemistry, 3rd edn. Worth, London

  • Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1α activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115

    Article  CAS  PubMed  Google Scholar 

  • Maynard-Smith J (1983) Game theory and the evolution of cooperation. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge

  • Murray JD (2002) Mathematical Biology, vol I. Springer, Berlin Heidelberg New York

  • Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826–829

    Article  Google Scholar 

  • Nowak MA, Sigmund K (1999) Phage-lift for game theory. Nature 398:367–368

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer T, Bonhoeffer S (2002) Evolutionary consequences of tradeoffs between yield and rate of ATP production. Z Phys Chem 216:51–63

    CAS  Google Scholar 

  • Pfeiffer T, Bonhoeffer S (2003) An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci USA 100:1095–1098

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507

    CAS  PubMed  Google Scholar 

  • Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332

    Article  CAS  PubMed  Google Scholar 

  • Turner PE, Chao L (1999) Prisoner's dilemma in an RNA virus. Nature 398:441–443

    Article  CAS  PubMed  Google Scholar 

  • Van Hoek P, Flikweert MT, Aart QJM van der, Steensma HY, Dijken JP van, Pronk JT (1998) Effects of pyruvate decarboxylase overproduction on flux distribution at the pyruvate branch point in Saccharomyces cerevisiae. Appl Environ Microbiol 64:2133–2140

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Thomas Pfeiffer (Zürich), Dr. Konrad Oexle (Singen) and Dr. W. Voelter (Tübingen) for stimulating discussions. Financial support to S.S. by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schuster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frick, T., Schuster, S. An example of the prisoner's dilemma in biochemistry. Naturwissenschaften 90, 327–331 (2003). https://doi.org/10.1007/s00114-003-0434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-003-0434-3

Keywords

Navigation